Synthesis of 1-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)acetyl-4-alkyl(aryl)thiosemicarbazides and their heterocyclisation to 1,2,4-triazoles and 1,3,4-thiadiazoles[†]

Romualdas Smicius, Virginija Jakubkiene, Milda M. Burbuliene, Aiste Mikalainyte and Povilas Vainilavicius*

Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-2006 Vilnius, Lithuania

5-(6-Methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)methyl-1,3,4-oxadiazole-2-thione reacts with amines to give 1-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)acetyl-4-alkyl(aryl)thiosemicarbazides, which on treatment with base or acid undergo cyclisation to 4-alkyl-1,2,4-triazole-2-thiones or 4-amino-1,3,4-thiadiazoles, respectively.

Keywords: pyrimidines, 1,3,4-oxadiazolethiones, 1,2,4-triazole-2-thiones, 1,3,4-thiadiazoles, thiosemicarbazides

Upon treatment of 5-substituted-1,3,4-oxadiazole-2-thiones with amines different reactions can occur, depending on the substituent at position 5 as well as on the nature of the amine used. Thus, salt formation, nucleophilic substitution of the mercapto group, opening of the 1,3,4-oxadiazole ring with formation of 4-substituted 1-acylthiosemicarbazides, recyclisation reaction of 1,3,4-oxadiazole to 4-substituted 1,2,4-triazole-3-thione are possible. 1-3

In this paper we report on reactions of 5-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinylmethyl)-1,3,4-oxadia-zole-2-thione (1)⁴ with different amines (Scheme 1).

Refluxing of the 1,3,4-oxadiazole-2-thione **1** with an equimolar amount of primary and secondary aliphatic amines or aniline in dioxane gave the thiosemicarbazides **2a–e** in high yield (72–91%). In the ¹H NMR spectra of compounds **2** signals of thiosemicarbazide group protons NHCS (9.27–9.98 ppm) and CONH (10.05–10.54 ppm) are observed. The singlets of the N(3)–CH₂ group [N(3) refers to the pyrimidine ring] (4.46–4.55 ppm) resonate up-field compared to that of the starting compound **1** (5.05 ppm). In the IR spectra, besides the absorption bands of NH (3100 cm⁻¹) and C=O (1725–1708, 1667–1643 cm⁻¹) groups of the uracil moiety, the absorption of the thiosemicarbazide NH (3164–3285 cm⁻¹) and C=O (1694–1665 cm⁻¹) fragments are observed. The C=S absorption appears at 1346–1352 cm⁻¹.

Traditional methods of synthesis 1-acyl-4-substituted thiosemicarbazides are based on the reaction of hydrazides with isothiocyanates. The method described here could be competitive, because of the wider variety of amines commercially available, compared with isothiocyanates.

1-Acyl-4-substituted thiosemicarbazides are useful for synthesis of biologically active 1,2,4-triazoles⁵ and 1,3,4-thiadiazoles.⁶ The acylthiosemicarbazides **2a–c** on treatment with potassium hydroxide underwent cyclisation to 4-alkyl-1,2,4-triazole-2-thiones **3a–c**. In the ¹H NMR spectra of **3** the N(3)-CH₂ group signals are located down field in comparison with those of the thiosemicarbazides **2a–c**. Also the NH group chemical shifts characteristic of 1,2,4-triazole-2-thiones are observed in the down field region at 13.64–13.92 ppm. The IR spectra exhibit absorption bands at 1340–1353 cm⁻¹, characteristic for a C=S group.

Treatment of thiosemicarbazides **2b,d,e** with conc. sulfuric acid resulted in a different mode of cyclisation, to form 2-amino-1,3,4-thiadiazoles **4b,d,e**. In the ¹H NMR spectra the N(3)–CH₂ group peaks are shifted downfield (5.07–5.14 ppm) than those of corresponding thiosemicarbazides **2b,d,e** (4.46–4.47 ppm). On the other hand, there is a significant difference in the shift of the methylene group protons in the benzyl substituent of 2-benzylamino-1,3,4-thiadiazole **4b** and 4-benzyl-1,2,4-triazole-3-thione **3b** due to the magnetic anisotropy of the aromatic triazole ring: the signal of the N–CH₂ protons in **3b** is located downfield (5.36 ppm) compared with that of **4b** (3.83 ppm).

Alkylation of 4-alkyl-1,2,4-triazole-3-thiones **3a–c** with ethyl bromoacetate in the presence of triethylamine in water gave 4-alkyl-3-ethoxycarbonylmethylsulfanyl-1,2,4-triazoles **5a–c**. The ¹H NMR of **5a–c** show shifts of the SCH₂ group in the region of 4.03–4.05 ppm. In the IR spectra of **5a–c** absorp-

 $[\]ast$ To receive any correspondence. E-mail: povilas.vainlavicius@ chf.vu.It

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

Table 1 Experimental, physico-chemical and spectral data for compounds 2-5

Compound M.p./°C		Found (required)/%				
yield/%	(solvent)	С	Н	N	v_{max} / cm ⁻¹	δ_{H}
2a (72)	192–194 (H ₂ O)	46.25 (45.99)	5.84 (6.11)	22.30 (22.35)	3285, 3100 NH) 1708, 1665, 1643 (CO) 1348 (CS)	0.92 (3H, t, J 7 Hz, CH_3), 1.4 (4H, m, CH_2CH_2), 2.11 (3H, s, CH_3), 3.40 (2H, m, NCH_2), 4.46 (2H, s, NCH_2), 5.55 (1H, s, CH_3), 7.58 (1H, s, $CSNH_2$), 9.33 (1H, s, $CONH_3$), 10.54 (1H, s, $CONH_3$), 11.27 (1H, s, $CONH_3$)
2b (87)	226–227 (MeOH+dioxane)	52.12 (51.86)	4.99 (4.93)	20.13 (20.16)	3285, 3096 (NH) 1709, 1690, 1651 (CO) 1345 (CS)	2.07 (3H, s, CH $_3$), 4.47 (2H, s, NCH $_2$), 4.74 (2H, s, NCH $_2$), 5.51 (1H, s, CH), 7.27 (5H, m, C $_6$ H $_5$), 8.34 (1H, s, CS $\underline{\text{NH}}$ CH $_2$), 9.51 (1H, s, CONH $\underline{\text{NH}}$ CS), 10.1 (1H, s, CO $\underline{\text{NH}}$ NHCS), 11.22 (1H, s, NH)
2c (85)	198–199 (H ₂ O)	50.63 (50.44)	4.37 (4.53)	20.84 (21.01)	3227 (NH) 1708, 1693, 1656 (CO) 1352 (CS)	2,11 (3H, s, CH $_3$), 4.55 (2H, s, NCH $_2$,), 5.54 (1H, s, CH), 7,52 (5H, m, C $_6$ H $_5$), 9,38-9,80 (1H, m, NHCS), 10,16-10,46 (1H, m, CONH), 11.24 (1H, s, NH)
2d (81)	233.5–234.5 (PrOH+H ₂ O)	49.77 (49.54)	6.13 (6.24)	20.41 (20.63)	3207, 3164, 3105 (NH) 1725, 1693, 1648 (CO) 1346 (CS)	1.49 (4H, m, $(CH_2)_2$), 1.71 (4H, m, $(CH_2)_2$), 2.09 (3H s, CH_3), 3.78 (4H, m, $N(CH_2)_2$), 4.47 (2H, s, NCH_2), 5.57 (1H, s, CH_3), 9.27 (1H, s, $CONH_3$ HCS), 10.05 (1H, s, $CONH_3$ NHCS), 11.20 (1H, s, NH_3)
2e (91)	233.5–234.5 (H ₂ O)	44.28 (44.03)	5.22 (5.23)	21.23 (21.39)	3196 (NH) 1716, 1683, 1667 (CO) 1347 (CS)	2.07 (3H, s, CH ₃), 3.66 (4H, t, J 7 Hz, O(CH ₂) ₂), 3.77 (4H, t, J 7 Hz, N(CH ₂) ₂), 4.46 (2H, s, NCH ₂), 5.50 (1H, s, CH), 9.68 (1H, s, CONHNHCS), 10.10 (1H, s CONHNHCS), 11.21 (1H, s, NH)
3a (68)	247–248 (H ₂ O)	49.01 (48.80)	5.80 (5.80)	23.70 (23.71)	3109 (NH) 1715, 1643 (CO) 1353 (CS)	0.98 (3H, t, J 7 Hz, CH ₃), 1.50 (4H, m, CH ₂ CH ₂), 2.12 (3H, s, CH ₃), 4.04 (2H, t, J 7 Hz, NCH ₂), 5.05 (2H, s, NCH ₂), 5.59 (1H, s, CH), 11.38 (1H, s, NH), 13.64 (1H, s, NH)
3b (93)	>300 (EtOH+DMF)	54.93 (54.70)	4.53 (4.59)	21.13 (21.26)	3086 (NH) 1715, 1643 (CO) 1348 (CS)	2.03 (3H, s, CH $_3$), 4.95 (2H, s, NCH $_2$), 5.36 (2H, s, NCH $_2$), 5.48 (1H, s, CH), 7.33 (5H, m, C $_6$ H $_5$), 11.26 (1H, s, NH), 13.83 (1H, s, NH)
3c (63)	266 (H ₂ O)	53.38 (53.32)	4.36 (4.15)	22.38 (22.21)	3095 (NH) 1721, 1652 (CO) 1340 (CS)	2.06 (3H, s, $\rm CH_3$), 4.75 (2H, s, $\rm NCH_2$), 5.48 (1H, s, CH), 7.53 (5H, m, $\rm C_6H_5$), 11.27 (1H, s, NH), 13.92 (1H, s, H)
4b (46)	>300 (H ₂ O+DMF)	54.96 (54.70)	4.50 (4.59)	21.40 (21.26)	3290, 3169, 3100 (NH) 1709, 1633 (CO)	2.08 (3H, s, CH $_3$), 3.83 (2H, s, NCH $_2$), 5.10 (2H, s, NCH $_2$), 5.55 (1H, s, CH), 7.25 (5H, m, C $_6$ H $_5$), 7.30 (1H, s, NH), 11.26 (1H, s, NH)
4d (58)	178–200 (H ₂ O)	52.60 (52.32)	5.85 (5.96)	22.07 (21.79)	3163, 3050 (NH) 1716, 1660 (CO)	1.51 (4H, m, $(CH_2)_2$), 1.74 (4H, m, $(CH_2)_2$), 2.06 (3H s, CH_3), 3.45 (4H, m, $N(CH_2)_2$), 5.07 (2H, s, NCH_2), 5.54 (1H, s, CH_2), 11.20 (1H, s, NH_2)
4e (50)	266–267 (H ₂ O)	46.67 (46.59)	5.08 (4.89)	22.85 (22.64)	3165, 3080 (NH) 1706, 1637 (CO)	2.07 (3H, s, CH ₃), 3.42 (4H, t, J 7 Hz, O(CH ₂) ₂), 3.69 (4H, t, J 7 Hz, N(CH ₂) ₂), 5.14 (2H, s, NCH ₂), 5.56 (1H, s, CH), 11.33 (1H, s, NH)
5a (76)	89–90 (CH ₃ CO ₂ C ₄ H ₉)	50.44 (50.38)	5.26 (6.08)	18.43 (18.36)	3104 (NH) 1718, 1637 (CO) 1175 (C-O-C)	0.93 (3H, t, <i>J</i> 7 Hz, CH ₃), 1.18 (3H, t, <i>J</i> 7 Hz, CH ₃), 1.45 (4H, m, CH ₂ CH ₂), 2.10 (3H, s, CH ₃), 4.05 (2H, s, SCH ₂), 4.08 (2H, t, <i>J</i> 7 Hz, NCH ₂) 4.19 (2H, q, <i>J</i> 7 Hz, OCH ₂), 5.05 (2H, s, NCH ₂), 5.55 (1H, s, CH) 11.28 (1H, s, NH)
5b (78)	103–105 (EtOH)	54.63 (54.92)	5.16 (5.09)	17.08 (16.85)	3086 (NH) 1726, 1630 (CO) 1179 (C-O-C)	1.18 (3H, t, <i>J</i> 7 Hz, CH ₃), 2.06 (3H, s, CH ₃), 4.03 (2H, s, SCH ₂), 4.21 (2H, q, <i>J</i> 7 Hz, OCH ₂), 5.05 (2H s, NCH ₂), 5.34 (2H, s, NCH ₂), 5.50 (1H, s, CH), 11.27 (1H, s, NH)
5c (73)	119–121 (CH ₃ CO ₂ C ₄ H ₉)	54.01 (53.86)	4.92 (4.77)	17.64 (17.45)	3091 (NH) 1740, 1648 (CO) 1171 (C-O-C)	1.20 (3H, t, <i>J</i> 7 Hz, CH ₃), 2.07 (3H, s, CH ₃), 4.04 (2H, s, SCH ₂), 4.12 (2H, q, <i>J</i> 7 Hz, OCH ₂), 4.88 (2H, s, NCH ₂), 5.50 (1H, s, CH), 7.63 (5H, m, aromatic), 11.22 (1H, s, NH)

tion bands of C-O-C of the ester group are observed in the range 1171-1179 cm⁻¹; the ester C=O band is overlapped by the C=O vibrations of the uracil moiety. Furthermore the characteristic absorption band of C=S group for 1,2,4-triazole-2thiones 3a-c in the region 1350 cm⁻¹ was not found in the IR spectra of compounds 5a-c.

Experimental

Melting points were determined in open capillaries and are uncorrected. The IR spectra were recorded in Nujol mulls on a Perkin-Elmer FT spectrophotometer Spectrum BX II ¹H-NMR spectra were recorded on a Tesla 587A instrument using tetramethylsilane as internal standard in DMSO- d_6 as solvent. The reactions and purity of compounds was controlled by TLC on Silufol UV 254 plates (KAVA-LIER, Czech Rep.) Microanalyses were performed at the Microanalyses Laboratory of the Department of Organic Chemistry of Vilnius University. Experimental, physico-chemical and spectral data for compounds **2–5** are given in Table 1.

1-(6-Methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)acetyl-4-alkyl(aryl)-thiosemicarbazides (2a–e). To a suspension of 1 (0.75g, 3 mmol) in dry dioxane (12 ml) the corresponding amine (3 mmol) was added. The reaction mixture was stirred at reflux (in the cases of hexamethyleneimine and morpholine for 2 h, for butylamine and benzylamine 5 h, and for aniline 22 h) and then cooled. The precipitate was filtered off, washed with a small amount of dioxane, and recrystallised to give 2a–e.

4-Alkyl(aryl)-5-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)methyl-1,2,4-triazole-3-thiones (3a-c): A solution of the corresponding compound 2a-c (1 mmol) in 10 ml of 10% KOH (for 2c 20% KOH) was stirred at room temperature for 4 h and acidified with conc. HCl to pH ~ 4. The solid was filtered off, washed with water, dried and recrystallised to give 3a-c.

2-Alkyl(aryl)amino-5-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)methyl-1,3,4-thiadiazoles (**4b,d,e**): Compound **2b,d** or **e** (1.5 mmol) was dissolved in conc. H_2SO_4 (2 ml) and stirred on a boiling water bath (or, in the case of **2b**, at room temperature) for 10 min, then cooled to -5° C and poured into ice-water (10 ml). The solution was neutralised with 20% KOH to pH ~ 5 under ice-cooling at < 5°C. The solid was filtered off, washed with water and recrystallised to give **4b,d,e**.

4-Alkyl(aryl)-3-ethoxycarbonylmethylsulfanyl-5-(6-methyl-2,4-dioxo-1,2,3,4-tetrahydro-3-pyrimidinyl)methyl-1,2,4-triazoles (5a-c): To a suspension of 3a,b or c (1 mmol) in water (10 ml) triethylamine (1 mmol, 0.1 g, 0.14 ml) and ethyl bromoacetate (1 mmol, 0.17 g, 0.11 ml) was added dropwise. The reaction mixture was stirred at 40°C for 2 h, then cooled. The precipitate was filtered off, washed with water, dried and recrystallized to give 5a-c.

Received 9 July 2001; accepted 6 November 2001 Paper 01/984

References

- 1 J.R. Reid and N.D. Heindel, *J. Heterocycl. Chem.*, 1976, **13**, 925.
- 2 D. Pancechowska-Ksepko, M. Janowiec and Z. Zwolska-Kwriek, Acta Pol. Pharm., 1994, 50, 259.
- 3 V. Jakubkiene and P. Vainilavicius, Khim. Geterotsikl. Soedin., 1998, 1125.
- 4 P. Vainilavicius, R. Smicius, V. Jakubkiene and S. Tumkevicius, Monatsh. Chem., 2001, 132, 825.
- 5 J.M. Kane, M.W. Dudey, S.M. Soresen and F. P. Miller, *J. Med. Chem.*, 1988, 31, 1253.
- 6 A.A. El-Eman, J. Lahmann, Monatsh. Chem., 1994, 125, 587.